
Efficient and Accurate Clustering
for Large-Scale Genetic Mapping

Veronika Strnadová∗,†, Aydın Buluç†, Jarrod Chapman[, John R. Gilbert∗

Joseph Gonzalez‡, Stefanie Jegelka‡, Daniel Rokhsar[,¶, Leonid Oliker†
†Computational Research Division / [Joint Genome Institute, Lawrence Berkeley National Laboratory, USA

‡EECS Dept / ¶Molecular and Cell Biology, University of California, Berkeley, USA
∗Computer Science Department, University of California, Santa Barbara, USA

Abstract—High-throughput “next generation” genome se-
quencing technologies are producing a flood of inexpensive genetic
information that is invaluable to genomics research. Sequences
of millions of genetic markers are being produced, providing
genomics researchers with the opportunity to construct high-
resolution genetic maps for many complicated genomes. However,
the current generation of genetic mapping tools were designed for
the small data setting, and are now limited by the prohibitively
slow clustering algorithms they employ in the genetic marker-
clustering stage. In this work, we present a new approach
to genetic mapping based on a fast clustering algorithm that
exploits the geometry of the data. Our theoretical and empirical
analysis shows that the algorithm can correctly recover linkage
groups. Using synthetic and real-world data, including the grand-
challenge wheat genome, we demonstrate that our approach can
quickly process orders of magnitude more genetic markers than
existing tools while retaining — and in some cases even improving
— the quality of genetic marker clusters.

I. INTRODUCTION

Genetic maps are essential for organizing DNA sequence
information along chromosomes, and they enable diverse ap-
plications of genetics to problems in health, agriculture, and
the study of biodiversity. Early genetic maps were constructed
using only a few hundred genetic markers (chromosomal
regions with two or more sequence variants in a population),
and with such limited data, their construction was accordingly
computationally inexpensive. With the advent of inexpensive
high-throughput “next generation” sequencing [1], however, it
is becoming a simple matter to generate data corresponding
to millions of genetic markers across a genome. This flood of
data rules out many standard, slow genetic mapping algorithms
and poses a new challenge: to produce accurate high-density
genetic maps in a computationally efficient manner.

A genetic map is a linear ordering of genetic markers
that is consistent with observed patterns of inheritance in a
population. An essential concept is the linkage group which
collects together markers that are found on a single chro-
mosome. Genetic maps are therefore organized into multiple
linkage groups, with the number of groups equal to the number
of chromosomes in the species. Within a linkage group, there
is a natural measure of proximity which arises from the
linear structure of chromosomes and the mechanics of their
transmission from generation to generation.

Given a pair of markers in the same linkage group, we
can estimate their proximity on the chromosome by comparing

their sequence across a mapping population of related individ-
uals. This estimate is made based on the LOD score, a loga-
rithm of odds that two markers are genetically linked, based on
the similarities and differences across each individual’s geno-
type. The fundamental problem of genetic map construction is
to take as input the sequences of n related individuals at m
genetic markers, with low genotyping errors and often missing
data (unknown genotypes of particular markers for particular
individuals), and to organize these markers into linear chains
that represent the structure of chromosomes.

The first step of genetic mapping involves clustering mark-
ers into linkage groups. This is traditionally performed by vari-
ous standard clustering algorithms applied to a similarity graph
of the markers. The similarity score between two markers can
be a simple attribute comparison or a computationally intensive
procedure, such as estimating the recombination rate of two
genetic markers via nonlinear regression [2], [3]. On large
datasets, computing the O(m2) pairwise similarities between
all m markers quickly becomes prohibitive. In addition, the
abundance of missing entries in genome sequencing data
makes it challenging to translate the LOD score into a distance
function that respects the triangle inequality, a requirement im-
posed on the data by many popular fast clustering algorithms.

To the best of our knowledge, no faster clustering method
than single linkage has been successfully applied to the linkage
group finding phase of genetic mapping, resulting in a trou-
blesome gap between the amount of sequence data available
for analysis and the amount that can be efficiently processed
by current mapping tools. The ordering stage of the genetic
mapping pipeline can be solved efficiently using heuristics
such as a minimum-spanning tree finding algorithm [3]. Our
initial efforts at benchmarking the popular genetic mapping
tools JoinMap and MSTMap revealed that the clustering stage
is indeed a severe bottleneck to the genetic mapping process.

In this paper, we propose a fast clustering algorithm that
circumvents the computation of all similarities by exploiting
prior knowledge about the specific structure of the marker
data: linkage groups (i.e., chromosomes) have an intrinsically
linear substructure that remains reflected in the similarity
measure. After sorting, the algorithm creates a specific sketch
that respects both the geometry and quality of the data. We
show correctness of the algorithm under mild assumptions,
and our empirical evaluation on synthetic and real-world data
demonstrates its scalability and accuracy in practice.

𝝉

𝒓𝟐
𝒓𝟑 𝒓𝟒

𝒓𝟓𝒓𝟏
(𝒃) (𝒄)

𝑖1 𝑖2 𝑖3 𝑖4

𝑚1 A B - -

𝑚2 A B A A

𝑚3 A A - -

𝑚4 A - B -

𝑚5 B - B A

𝑚6 A A B A

𝑚7 - - - A

Data

(missing data)

𝑚7

𝑚4𝑚5

𝑚3
𝑚6

𝑚1

𝑚2

𝑚4

𝑚5

𝑚7

𝑚1

𝑚2

𝑚6
𝑚3

LG1

LG2

cluster order

LG1 LG2

(𝒂)

(𝟐)(𝟏)
(3)

space

𝒓𝟐 𝒓𝜶

𝒙𝒊

𝒓𝟐 𝒓𝜶

𝒙𝒊

(𝒅) (𝒆)

Fig. 1. (a) Genetic map construction pipeline: The markers are clustered into
linkage groups (LG’s), ordered within each linkage group, and finally spaced
according to their genetic distance. (b) The linear structure of markers within
a linkage group; (c) representative points ri are shown as red stars; (d), (e)
difference between a point xi that is added as a new boundary point (d) and
one that is not (e) based on LOD(rα, r2), LOD(rα, xi) & LOD(xi, r2).

II. PROBLEM DEFINITION

Computational tools for genetic mapping follow three
phases: (1) grouping markers into linkage groups (typically
chromosomes), (2) ordering markers within chromosomes and
(3) map distance estimation (Fig. 1(a)). Current software tools,
such as the popular MSTMap [3] and JoinMap [4], typically
fail to scale beyond tens of thousands of markers, especially
when there is a high missing data rate. Our initial benchmarks
revealed that a severe bottleneck is the pairwise similarity
calculation step in the linkage group construction phase, and
we therefore focus on this bottleneck here.

We attempt to solve the following problem: given m mark-
ers out of a population of n individuals, with a low genotyping
error rate and a known missing data rate µ, cluster the markers
into a (possibly unknown) number k of clusters. Each cluster
represents one linkage group from the species whose sequence
data is obtained from the mapping population. Formally, we are
given m markers measured across n individuals in the mapping
population and aim to find ordered, connected clusters (linkage
groups) C1, ..., Ck. The entries of a marker feature vector xi
are individual genotypes at marker sites. In this paper, we
will explain genetic marker clustering in terms of homozygous
genotypes. Hence, the n entries of a marker feature vector can
take only two values A and B, or ‘−’ for missing values.

Linkage groups are typically constructed by single linkage
clustering based on LOD score similarities. The LOD score is
the logarithm of a ratio of odds that two markers are genetically
linked. A critical LOD score (linklod [4]) is estimated and
serves as the cut-off threshold for constructing clusters from
the single linkage dendrogram.

The LOD score for two markers xi, xj is
LOD(xi, xj) = log10

(
(1−θ)NR θR

0.5NR+R

)
, where θ = R

NR+R is
the recombination fraction, R is the number of recombinant
individuals between the two markers, and NR is the number
of non-recombinant individuals. Thus the LOD score is the
logarithm of odds that two markers are genetically linked,
under a null hypothesis of independent assortment. It is easy

to show from the definition above, that the LOD score takes
on a minimum value of 0 over the interval 0 ≤ θ ≤ 1 at
θ = 1/2 (where R = NR). The LOD score is symmetric about
θ = 1/2, taking on its maximum value of (R+NR) log10(2)
at θ = 0 (where R = 0) and θ = 1 (where NR = 0). Note that
R+NR is not necessarily equal to the number of individuals
in the population, because the sequence data for either marker
may be missing for a particular individual.

The LOD score is minimized at 0, and large positive values
indicate that it is very unlikely that the markers happen to
(either mismatch or) match in genotype for a large number
of individuals by chance. Changes in population type (DH,
RIL, F2, etc...) only affect the computation of R and NR in
the LOD calculation. Thus our algorithm generalizes to more
complex populations. In other words, heterozygosity will not
change the fact that we depend on the LOD score to evaluate
marker-marker similarity.

We point out that the fixed order of genetic markers
along chromosomes is a key property of the data. Exploiting
this linear, one-dimensional structure enables us to design a
specialized procedure for finding linkage groups that is faster
than generic clustering algorithms. We use the LOD score to
quickly build representative sketches of the structure of each
cluster. These sketches enable us to efficiently assign each
marker to its proper linkage group.

III. THE BUBBLECLUSTER ALGORITHM

Algorithm 1 clusters in three phases: (1) perform an initial
clustering C using high-quality markers (lines 1–17); (2) assign
low-quality markers to their most likely cluster C ∈ C (lines
18–22); and finally (3) merge unrealistically small clusters with
large clusters (lines 23–25). This is a coarse-to-fine approach: it
relies on a good clustering of reliable high-quality data points
in Phase 1 as a skeleton to assign the low-quality points in
Phase 2. Such a hierarchical approach relates to theoretically
well-grounded clustering techniques like core sets [5], [6] or
nearest neighbor clustering [7]. In Phase 3, we identify clusters
which are too small to be considered true linkage groups. We
attempt to merge all such clusters with the larger clusters from
Phases 1 and 2.

Our algorithm takes four parameters as input: the threshold
LOD score τ , the non-missing data threshold η, a cluster size
threshold σ, and an odds difference threshold c. The selection
and significance of τ and η will be explained in Section III-B.
Briefly, τ represents the LOD score that a marker must achieve
with at least one representative marker, or sketch point, rj in
order to join the cluster that contains rj . Because missing data
makes it impossible or very unlikely that markers with many
missing entries will ever achieve a LOD score of τ , we use
η to limit the number of missing entries allowed for markers
included in Phase I of our algorithm. The σ input places a
lower bound on the size of a cluster that the user expects
could represent a true linkage group. The constant c determines
whether the odds that a marker belongs to one particular cluster
is much greater than the odds that it belongs to another cluster.
For ease of reference, we provide a table of these and other
variables that we refer to throughout the paper in Table I.

Backbone Clustering. The first, most important phase of
the algorithm exploits the structure of genetic linkage groups

Algorithm 1: BubbleCluster Algorithm
Inputs: X = {x1 . . . xM}, τ, η, c, σ

1 C ← ∅; R ← ∅; // Lists of cluster and
representative sets

2 sort X by increasing missing data;
3 H = {xi ∈ X | nonmissing(xi) > η} ;
4 if |H| == 0 then return C,R;
5 for point x ∈ H in sequence do
6 if R = ∅ then
7 define new cluster Cα: Cα ← {x};
8 define new rep. set Rα: Rα ← {x};
9 C ← C ∪ Cα,R ← R∪Rα;

10 else
11 rmax = argmax

r
LOD(x, r) s.t. r ∈ Rα ∈ R;

12 if LOD(x, rmax) > τ then
13 rmax2

= argmax
r/∈Rα

LOD(x, r) ;

14 assign x to cluster Cα: Cα ← Cα ∪ {x};
15 if isBdryPt (x,Rα) then add x to the

correct end of Rα ;
16 if LOD(x, rmax2) > τ then MergeRs

(Rα, Rβ); MergeCs (Cα, Cβ) ;
17 else set up new cluster:

C ← C ∪ {x},R ← R∪ {x} ;

18 for y ∈ X \ H do
19 rmax = argmax

r
LOD(y, r) s.t. r ∈ Rα ∈ R;

rmax2 = argmax
r/∈Rα

LOD(y, r) ;

20 lmax2 = LOD(y, rmax2); lmax = LOD(y, rmax);
21 if (lmax − lmax2) > c then Cα ← Cα ∪ {y} ;
22 else set up new cluster:

C ← C ∪ {y},R ← R∪ {y} ;
23 for all C in C s.t. |C| < σ do
24 pick a cj ∈ C;
25 if LOD(cj , rk) > τ for any rk in any Rα ∈ R then

MergeCs (C,Cα) ;

τ LOD threshold
η non-missing data threshold (applied to marker vector entries)
σ cluster size threshold
c odds difference threshold
µ missing data rate in the dataset
n population size (number of individuals in the mapping population)
k number of clusters
ε error tolerance for misassignment of markers to clusters
nnm number of non-missing entries in a particular marker vector
r number of representative points aka sketch points
b number of bins, i.e. unique locations on the genetic map, always O(nk)
H high-quality set, defined as the set of markers with nnm > η

TABLE I. LIST OF PARAMETERS/VARIABLES USED

for quickly ordering genetic markers. In Phase 1, we only
process high-quality markers, that is markers with at least η
non-missing entries. The algorithm establishes clusters on the
fly: each incoming point is either close to, and hence assigned,
to an existing cluster, or it creates a new cluster. Two clusters
are merged if they are “close” in genetic distance, i.e. if points
on the boundary of the clusters obtain a LOD score greater than
a given threshold τ .

To avoid storing and comparing distances between a new
point and all previous points, we only keep a representa-
tive sketch Rα for each cluster Cα. To create and maintain
sketches, we exploit the special linear structure of the data,
illustrated in Fig. 1(b). The resulting sketch is therefore
an ordered list of representative points (Fig. 1(c)) where
for every point in Cα, there is a point rα(x) in Rα with
LOD(x, rα(x)) > τ .

For each incoming point x, we find the closest sketch
point rmax. If LOD(x, rmax) > τ , then x is assigned to the
cluster of rmax. Otherwise, it sprouts a new cluster (line 17).
If x is added to an existing cluster, we check whether it is
well represented by the current sketch, or whether we need to
augment Rα. Here, we use the linearity assumption. If x is
outside of the boundaries specified by Rα (the isBdryPt()
function, line 15), we add x as a new (boundary) sketch point.
If rmax is the only sketch point, x becomes a new sketch point
automatically. If not, we compare the LOD score between x
and the point r2 ∈ Rα immediately next to rα in the ordered
list Rα, and the LOD score between rα and r2 as illustrated
in Figures 1(d) and 1(e): if LOD(x, r2) < LOD(r2, rα) and
LOD(x, r2) < LOD(x, rα), then x extends the boundary.

When x becomes a new sketch point, it extends Cα in the
linear dimension along which we assume the sketch points to
lie. It succeeds rα and becomes a new end of Rα. Finally,
we determine whether x connects two clusters (line 16) by
finding the nearest sketch point rmax2

that is not in the cluster
to which x was assigned. If LOD(x, rmax2

) > τ , then x
forms a bridge rmax, x, rmax2

between the two clusters. When
merging clusters, we also merge their sketches Rα and Rβ . To
do so, we compare the four boundary points of Rα and Rβ and
append Rβ to the end of Rα in the order which maintains the
greatest LOD score between boundary two points, one from
either cluster.

Low quality marker assignment. At the completion of
Phase 1, we have an initial clustering C of all the high-quality
data points x ∈ H, along with their ordered sketches. In Phase
2 (lines 18–22), we rely on the sketches to assign the remaining
low quality markers y ∈ X \H to one of the existing clusters.
We use a simple heuristic: for each low-quality marker, we find
the difference between lmax2

= LOD(y, rmax2
) and lmax =

LOD(y, rmax), where rmax and rmax2
are defined as above. If

this difference is greater than a threshold c, then we add y to
the cluster Cα containing rmax. Otherwise, we simply create a
new, temporary singleton cluster containing only the point y.
This choice of difference threshold means that the odds that
y belongs to cluster Cα should be by a factor of 10c greater
than the odds that y belongs to any other cluster. Moreover,
we only assign points to existing clusters for which we have
high confidence in our assignment.

Merging small clusters with large clusters. At this stage,
we rely on further assumptions about the underlying structure
of our clusters, based on the following prior knowledge of true
linkage groups: we know that each marker comes from exactly
one linkage group, and that these groups tend to be relatively
large. We attempt to merge all clusters C with |C| smaller than
a user-specified σ with larger clusters, by picking a random
point within each small cluster and comparing its distance to
all the sketch points r in large clusters. If this point is found
to lie within the threshold distance of a sketch point, then we

merge the small cluster with the large cluster. We can estimate
σ based on the number of markers and the number of expected
linkage groups – σ is the largest cluster size that the user would
consider too small to be a true linkage group.

Running time.: The BubbleCluster algorithm runs in time
O(m log(m) + mr) for m markers and r sketch points. If
we have chosen a threshold less than LODmax, which is the
maximum achievable LOD score between any two markers in
our dataset (and is bounded by n log10 2) then the number of
sketch points is bounded by the number of uniquely identifiable
locations in the genome, which we refer to as bins1 and
whose number we denote with b. For a fixed number k of
chromosomes in the organism and n individuals in the mapping
population, the number of bins is proportional to n and k:
b = O(nk) [8]. Thus r = O(kn). For the organisms of interest
in our work, under typical experimental conditions, the number
of bins is in the thousands. In our experiments, the number of
sketch points never exceeded 7% of the linkage group size,
and was in fact much lower than nk.

A. Correctness of the Algorithm

We make the following assumptions on the true underlying
linkage groups C∗1 , . . . C

∗
K that are roughly reasonable for real

data.

A1. Separation: there exists a λsep > 0 such that for any
C∗α and any two points x ∈ C∗α, y /∈ C∗α, it holds that
LOD(x, y) < λsep.

A2. Connectedness: there exists a constant λconn with 0 <
λsep < λconn such that for every C∗α and each x1, x2 ∈
C∗α, there is a path of points y1, . . . ym ∈ C∗α ∩ H
with LOD(x1, y1) > λconn, LOD(ym, x2) > λconn
and LOD(yj , yj+1) > λconn for all 1 ≤ j ≤ m.

A3. Local linear ordering: If for three points x1, x2, x3 ∈
C∗α, LOD(x1, x2) > λconn − δ and LOD(x2, x3) >
λconn − δ for a δ > 0, then the true order of these
points is x1, x2, x3 if and only if LOD(x1, x3) <
min (LOD(x1, x2), LOD(x2, x3))

2.

Lemma 3.1: If λconn > τ ≥ λconn− δ > λsep and if A1-A3
hold, then the algorithm identifies the correct clusters for all
points in H within one pass over the sorted data.

Proof: First, the following invariant holds throughout and
after Phase 1: any existing cluster C ′α is a subset of a true
cluster, i.e., C ′α ⊆ C∗β for some β. When a cluster is created,
it consists of one point and therefore certainly is contained in a
single true cluster. If a new point x gets added to C ′α, that point
is within a LOD score of τ > λsep of rmax ∈ C∗β , and hence by
A1, x and rmax must be in the same true cluster. Two clusters
are merged only if there is a path (rmax, x, rmax2) between
them with a LOD score of at least τ at each hop. By A1,
these clusters must therefore belong to the same true cluster.

Second, we see that if C ′α ⊆ C∗γ and C ′β ⊆ C∗γ , then
α = β, i.e., no true cluster is split: If C∗γ was split, then,
by A2, there would be points yα ∈ C ′α and yβ ∈ C ′β with
LOD(yα, yβ) > λconn. Let rα be the point that yα was

1Many markers may map to the same location on a chromosome.
2This assumption is supported by the fact that the recombination fraction

between markers very close together on the chromosome is a reliable estimate
of genetic distance [9],[10]

assigned to, and rβ the point that yβ was assigned to. Then
LOD(rα, yα) > τ and LOD(rβ , yβ) > τ . Without loss of
generality, let us assume that yβ was encountered after yα by
the algorithm, and that yα is the closest point (highest LOD
score) to yβ in Cα. Then, yα must be a boundary point when
it is added to its cluster. To see this, consider 2 cases:
(i) rα is the only sketch point in its cluster at the time
yα is seen. In this case, yα automatically becomes a new
representative point.
(ii) There are other sketch points in the cluster of rα. By the
way we merge clusters, there must be at least one sketch
point r′α with LOD(r′α, rα) > τ . Since LOD(yα, rα) >
LOD(yα, r

′
α), LOD(yα, rα) > τ , and LOD(r′α, rα) > τ ,

then by A3 yα will be made a boundary point when it is
encountered.
Since yα is a boundary point, then when yβ is encountered,
its LOD score will be highest with the sketch points rα and
yβ , with both of these LOD scores above τ . Hence, C ′α and
C ′β will be merged.

In the presence of high missing data rates, the algorithm still
provably achieves perfect precision but not perfect recall.

B. Parameter selection

In theory and in practice, the LOD threshold τ and non-
missing data threshold η will affect both the running time and
the accuracy of our algorithm. In this section, we show that
τ and η are interdependent, and we explain how we choose τ
and η given a population size n and a missing data rate µ. The
effect of c and σ is easily explained and will be addressed at
the end of the section.

Recall that a marker must achieve a LOD score above τ
with a representative point in order to join that representative
point’s cluster, and that η limits the number of missing entries
a marker vector can have in order to be included in the high-
quality marker set H. Our choices of τ and η were made to
maximize the probability that each marker will be assigned to
the correct cluster (set the LOD threshold τ high enough), but
to also include enough points in H to build a reliable sketch
of each cluster (set the nonmissing threshold η low enough).

Suppose that the number of observed entries nnm in a
marker xi is less than the number of observed entries in another
marker xj . As the number of nonrecombinant individuals NR
in this pair of markers (xi, xj) approaches nnm, the maximum
achievable LOD score for this pair approaches nnm log10 2 (by
the definition of the LOD score in Section II):

lim
NR→nnm

log10


(
1− R

R+NR

)NR (
R

R+NR

)R
0.5R+NR

 = nnm log10 2

Thus, the maximum achievable LOD score for a marker is
dependent upon the number of nonmissing entries in that
marker. For a LOD threshold τ , if nnm ≤ τ/ log10 2 in xi,
then line 12 will evaluate to false for any choice of rmax.
We want to set η high enough to prevent an overabundance
of clusters from sprouting, which would necessarily raise the
number of representative points and hurt efficiency – thus η
should be at least τ/ log10 2.

We can be even more aggressive in limiting missing entries
in the high-quality set, however. Given a missing rate µ, and a
marker xi with nnm non-missing entries, we expect the number
of non-missing entries xi shares with any other marker will
be: E [shared nonmissing entries(xi)] = (1− µ)nnm. Thus if

(1− µ)nnm > τ/ log10 2⇒ nnm > τ/(1− µ) log10 2

then we expect xi to achieve a LOD score greater than
the threshold τ with at least one other marker xk in the
high-quality set. If the structure of each cluster is indeed
approximately linear, then we expect that the sketch point r
nearest xk will also achieve a high LOD with xi, allowing xi
to be placed in the appropriate cluster. If, on the other hand,
nnm ≤ τ/(1− µ) log10 2, we can choose to eliminate xi from
H because it is unlikely that xi will score higher than τ with
any sketch point.

Here the interplay between the efficiency and accuracy of
our algorithm becomes apparent. For a high missing data rate,
the gap between λconn and λsep may be small, and τ must be set
very high. If τ is greater than λsep, we can guarantee perfect
precision, but we may eliminate so many markers from the
high-quality marker set that we will not have enough markers
to guarantee coverage of all clusters, resulting in low recall.
Therefore, with a high missing data rate we seek to minimize
the probability that we assign a marker to the wrong cluster,
allowing τ to be less than λsep. Let p represent this probability:

p = P (LOD(xi, xj) > τ |xi ∈ Ci, xj ∈ Cj , i 6= j)

By the definition of the LOD score, p ≤ 1/10τ . Let ncomp be
the number of LOD comparisons that we make in line 12 of
our algorithm. The probability that we make no mistakes in
assigning a marker to its cluster is then:

P (no mistakes) = (1− p)ncomp

Therefore, to ensure that P (no mistakes) > 1 − ε for ε > 0,
we need: (

1− 1

10τ

)ncomp

> 1− ε

⇒ τ > log10

(
1

1− (1− ε)1/ncomp

)
Recall that bins are uniquely identifiable locations on the
genetic map, and their number b is O(kn) for k linkage groups
and n individuals in the mapping population. An upper bound
on ncomp is thus

(
b
2

)
, corresponding to the grossly pessimistic

situation where every bin is represented by a representative
point, and the LOD score must therefore be evaluated once
for every bin pair. Although this is a worst-case scenario, we
can use this upper bound to estimate τ given an ε > 0.

Our selection of τ and η is thus a balancing act, where
we want to ensure that τ is high enough to guarantee a high
P (no mistakes), but at the same time is not so high that a large
fraction of our data would be excluded from Phase 1, which we
rely on to build a sketch of each cluster. For example, if we are
given a population size of n = 300, we expect k = 10 linkage
groups, and we want to achieve P (no mistakes) > 0.99, then
τ > log10

(
1/1− 0.991/(

3000
2)
)
= 8.6509 would achieve per-

fect precision with 99% confidence. Given a missing data rate
µ = 35%, we require nnm > 8.6509/(0.65) log10 2 = 44.2117,

so we would set η to 44. If µ = 65%, then by the same
calculation we would require η ≥ 82.1076. If this choice
of η excludes too many markers from H, we might choose
to either raise ε or allow less-than-perfect precision (achieve
a low P (number of mistakes > constant)) in exchange for
greater coverage of the linkage groups by the markers in H.
In practice, we achieve extremely high precision as well as
recall using these crude estimates.

Although c and σ also influence the resulting cluster
quality, their effect is quite obvious. Higher c values prevent
markers with many missing entries to be assigned to any
cluster, resulting in more small clusters in the output. These
small clusters can be left out of the final genetic map or
assigned to larger clusters by more careful analysis by the user.
Similarly, high values of σ can cause unnecessary comparisons
to be made between large clusters that already represent
linkage groups, while extremely small values may miss the
opportunity to merge small clusters with larger clusters.

C. Related Work

Several computational tools exist for the construction of
genetic linkage maps, as explained in the survey by Cheema
and Dicks [8]. Since then, OneMap [11] and Lep-MAP [12]
have also been proposed. All these tools, without exception,
perform all-pairs comparisons among markers, making them
unsuitable for datasets with millions of markers. Structural
clustering methods that have been applied to genetic map-
ping include connected components [13], [14], [3] and single
linkage clustering [15]. Differently from single linkage, we
construct and merge clusters on the fly, requiring only one
pass through the data after sorting.

General compressed representations for clustering prob-
lems have been addressed by core sets [5], [6], and by
hierarchical re-clustering ideas for streaming and distributed
clustering [16], [17]. As opposed to general sampling tech-
niques, we extract a problem-specific representative core set
deterministically within one pass, and exploit the specific
structure of the marker data.

Our algorithm maintains an ordering of the dataset that
is similar in spirit to the OPTICS [18], DBSCAN [19], or
BIRCH [20] algorithms. However, our algorithm is not density
based. Applying density-based approaches to genetic marker
data would be difficult if not impossible, due to the lack of a
distance metric with which to compute inter-marker distances.
The challenge is converting the LOD similarity score into a
valid distance metric which respects the triangle inequality. We
cannot use density-based approaches which rely on the notion
of an “ε−neighborhood” around data points in order to find a
dense region of the space in which the data lie.

Our algorithm uses several representative points to provide
an accurate coverage of the underlying cluster. In that sense,
our approach is closest to the CURE algorithm [21], which
also maintains representative points. The specific insight we
draw from the genetic mapping problem enables our algo-
rithm to maintain a better performance bound than CURE’s
O(m2 logm) bound, and allows us to prove correctness with
mild assumptions.

IV. EMPIRICAL EVALUATION

We compare our algorithm to two popular genetic mapping
tools: JoinMap and MSTMap. We also provide a comparison
with PIC, a spectral clustering approach [22]. Most of the
experiments were run on Neumann, a quad-core server with
AMD Opteron 8378 Processors running at 2.4GHz. Because
JoinMap requires the Windows OS, experiments with JoinMap
were performed on a Windows desktop with Intel 2.93GHz
Core 2 Duo processors. Our code was written in C++ and
compiled with gcc 4.4.7. All experiments are single threaded
and use a single core.

A. Data

We evaluate BubbleCluster on both real and synthetic
datasets. The first dataset, barley, consists of 65,357 genetic
markers from a population of 90 individuals with 20% missing
data. This species of barley has 7 true linkage groups. The
second, larger switchgrass dataset of 548,281 genetic markers
comes from a population of 500 individuals (with some repli-
cated individuals for better coverage), with 65% missing data
and 18 true linkage groups. Due to its size, previous clustering
efforts on this data focused only on the 113,326 highest-quality
markers. We cluster both the 113K subset of markers and
the complete 548K dataset in our experiments to demonstrate
the scalability of our algorithm. Our third timing result on
real data is for the grand-challenge wheat genome, containing
1,582,606 markers from a population of 88 individuals and
21 true linkage groups with 39% missing data entries. We do
not report accuracy results on wheat because single-linkage
clustering failed to provide a golden standard result to compare
to after a week of computation given all our resources.

For scaling studies, we rely primarily on synthetic data gen-
erated by the SPAGHETTI software, which simulates genetic
marker data with real-life complications [23]. In particular, we
created datasets for a range of missing data rates, from 0 to
65%. We varied the number of markers from 12.5K to 400K,
doubling the size at each increment. The population size was
fixed at 300, the sequencing error rate at 0.1%, and the number
of linkage groups at 10 in all experiments.

B. Evaluation Metric

We use the overall F -score to evaluate the quality of each
clustering. The F -score ranges from 0 (no correspondence) to
1 (perfect match), and evaluates a test cluster Ci with respect
to a “golden standard” cluster Gj in terms of precision and
recall [24]. Formally, if Gj ∈ G is a golden standard cluster,
then the F -score for a test cluster Ci with respect to Gj is
defined as: F (Gj , Ci) =

2pijrij
rij+pij

, for recall rij =
|Ci∩Gj |
|Gj | and

precision pij =
|Ci∩Gj |
|Ci| . The overall F -score is a normalized,

weighted sum of the F -scores for each golden standard clus-
ter Gj ∈ G: F (G, C) = 1

m

∑k
j=1 |Gj |maxi=1...l F (Gj , Ci),

where k is the number of true clusters, l is the number of
test clusters, and m is the total number of datapoints. “True”
clusters are generated directly in simulated data experiments;
for real data, if assumption A1 holds, then single linkage
clustering will provably find the correct clusters given a
threshold τ > λsep. We thus rely on the outcome of single
linkage clustering to measure accuracy on real data.

BubbleClusterDataset Markers
F -score Time

Barley 64K 0.9993 15 sec
S-grass 113K 0.9745 8.9 min
S-grass 548K 0.9894 1.9 hrs
Wheat 1.582M N/A 1.22 hrs

TABLE II. CLUSTERING PERFORMANCE ON BARLEY,
SWITCHGRASS, AND WHEAT FROM THE JOINT GENOME

INSTITUTE USING BUBBLECLUSTER. MSTMAP AND JOINMAP
ARE UNABLE TO CLUSTER DATA SETS AT THIS SCALE.

12.5K Markers 25K MarkersClustering
F-Score Time F-Score Time

JoinMAP 0.9996 14 min 0.9998 46 min
MSTMap 0.9996 4.5 min 0.9998 20 min

PIC 0.4702 11 sec 0.6078 44 sec
+(4 min) +(16.5 min)

Bubble 0.9996 6 sec 0.9998 15 sec

TABLE III. PERFORMANCE COMPARISON OF CLUSTERING
ALGORITHMS USING SYNTHETIC SPAGHETTI WITH 35% MISSING

DATA AND 0.1% ERROR RATE. ALL EXPERIMENTS RAN ON
NEUMANN (LINUX/AMD), EXCEPT JOINMAP RAN ON THE

WINDOWS MACHINE. THE PARENTHESIZED PIC ALGORITHM
NUMBER IS PREPROCESSING TIME FOR PAIRWISE CALCULATIONS.

C. Results

Table II summarizes the running time and F -score on the
real data sets. A LOD threshold of τ = 8 with nonmissing
data threshold η = 66 was used to cluster the 65K barley
dataset; for switchgrass, we used thresholds τ = 20 and
η = 132; for wheat, we fixed τ = 9 and η = 44. The c
parameter was set to 5, and σ to 100, in all experiments.
Our selection of τ and η was based on two objectives, as
explained in Section III-B: (1) maximize the probability that
each marker is assigned to the correct cluster, but at the same
time (2) ensure that Phase 1 contains sufficiently many markers
to build a reliable sketch of each cluster. No mapping tool we
know of, including the popular MSTMap or JoinMap, has been
successful in clustering genetic marker datasets at this scale.

Table II demonstrates that we achieve very accurate clusters
in O(m logm) time for m markers, a significant improvement
over the O(m2) algorithms used by other genetic marker clus-
tering tools. We emphasize that these datasets come from real-
world sequence data, where missing data entries do not have a
simple known distribution. Nonetheless, our algorithm recovers
the linkage groups with both precision and recall above 97%.
We omit comparisons with MSTMap on all but the smallest
dataset of 64K markers, where it took MSTMap almost a week
to ultimately place all the markers in the same cluster. The
clustering accuracy of the recently sequenced wheat genome,
with 1.582 million markers, has been independently validated
in a recent study [25]. In summary, our algorithm achieves
very high accuracy at fast running times.

Table III underscores our ability to outperform existing
genetic clustering methods as well as more general clustering
methods applied to synthetic genetic marker data. Even on rel-
atively small datasets, where JoinMap and MSTMap complete
the clustering stage in a reasonable amount of time, we achieve
identical F -scores as those methods, but within a fraction
of the time. In fact, the results are slightly biased in favor
of JoinMap. Although this tool will automatically construct
the single-linkage dendrogram from an input data matrix, the
user must select which dendrogram edges to cut in order to
produce the final clusters. We selected the edges that resulted

4.4

9.8

21.0

47.2

96.6

237.8

6.7

14.0

31.7

86.4

198.7

475.1

1

2

4

8

16

32

64

128

256

512

1024

12.5 25 50 100 200 400

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

R
u

n
ti

m
e

 (
s)

Dataset Size (in thousands of markers)

Er
ro

r
(1

 -
Fs

co
re

)
BubbleCluster Results on Simulated Data

error, 65% missing

error, 35% missing

Fig. 2. Average errors (1 − F -score, left axis) and runtimes (right
axis) for increasing dataset sizes.

in the best clustering based on our prior knowledge of the
simulated linkage groups. The time reported is only the time
for generating the JoinMap dendrogram.

The best run out of several re-runs with different counts of
pseudo-eigenvectors for the PIC algorithm is reported in Table
III. The clustering was performed using k-means++ on the
data projected onto the two-dimensional space spanned by two
pseudo-eigenvectors. This procedure performed empirically the
best. We include the running time of PIC given the similarity
matrix as input, and indicate the O(m2) time required to
construct this matrix in parentheses. The inability of PIC
to produce competitive results in terms of clustering quality
motivates the need for a more application-specific approach in
this domain. We point out the drawbacks in applying general
clustering methods to a problem with missing data, a similarity
function that cannot be expressed as an inner product, and
an underlying structure that can only be exploited if the
application-specific problem is well understood.

Our ability to scale, while simultaneously making use of
more data availability, is demonstrated in Fig. 2. Here, we
increase the size of our synthetic dataset from 12.5K to 400K
genetic markers. We report the clustering quality for both 35%
and 65% missing data in terms of the errors we make; the
error is reported in terms of (1 − F -score) for each (dataset
size, missing data rate) pair (left-hand axis of Fig. 2). The
running times for the same data are plotted with respect to
the right-hand axis of Fig. 2. Both the running time and errors
are averages of five trials on each dataset size. We make two
points about these empirical results: (1) the error we make in
clustering decreases linearly, in almost exact correlation with
the size of the data, and (2) the running time increases with
O(m logm), promising reliable performance up to almost half
a million markers, even with an enormous amount of missing
data. Comparing Table II with these results, we believe the
behavior of our algorithm in these experiments is predictive
of its performance in the real world.

Lastly, we make a note on the impact of our choices of
thresholds on the cluster quality and the running time. Tables
IV and V capture the behavior of BubbleCluster on a 200K
simulated dataset with 300 individuals with fixed missing data
rates of 65% and 35%, respectively. In the top half of Table
IV, we fix η at 66 and vary τ . With this choice of η, any
marker that can achieve a maximum LOD score of at least 20
will be included in the high-quality set H. The running time

200K Markers, 300 individuals, 65% missing, η = 66

τ 5 6 7 8 9 10
F-Score 0.1894 0.5240 0.9261 0.9999 0.9998 0.9988
Time (s) 82.5 124 155 183 242 307

200K Markers, 300 individuals, 65% missing, τ = 8

η (self-lod) 66 (20) 83 (25) 99 (30) 116 (35) 132 (40) 149 (45)
F-Score 0.9999 0.9982 0.9004 0.6169 0.4986 N/A
Time (s) 183 190 180 101 42.3 N/A

markers with nnm > η 200,000 199,205 148,914 16,551 99 0

TABLE IV. F-SCORES & RUNNING TIMES FOR VARYING
CHOICES OF η & τ ON A 200K DATASET WITH 65% MISSING DATA.

200K Markers, 300 individuals, 35% missing, η = 132

τ 5 10 15 20 25 30
F-Score 0.6225 0.9999 0.9999 0.9999 0.9999 0.9999
Time (s) 48.6 67.0 70.9 82.0 106 170

200K Markers, 300 individuals, 35% missing, τ = 20

η (self-lod) 132 (40) 166 (50) 172 (52) 179 (54) 186 (56) 192 (58)
F-Score 0.9999 0.9999 0.9992 0.9930 0.9610 0.8948
Time (s) 82.0 84.6 82.7 83.0 81.7 82.0

markers with nnm > η 200,000 199,920 199,296 193,701 169,648 124,263

TABLE V. F-SCORES & RUNNING TIMES FOR VARYING CHOICES
OF η & τ ON A 200K DATASET WITH 35% MISSING DATA.

increases with increasing τ , as expected; a higher τ will cause
more clusters and sketch points to be created, increasing the
number of LOD comparisons the algorithm needs to make. The
F -score also increases up to τ = 8, then drops off slightly for
increasing values of τ . This is due to Phase III of our algorithm
– at τ > 8, small clusters are created that cannot be merged
with any large existing cluster because no marker within the
small clusters achieves a high enough LOD score with any of
the large clusters’ sketch points.

In the bottom half of Table IV, we reverse the roles of η and
τ . Here, τ remains fixed at 8 and we increase η from 66 (22%
observed entries) to 149 (49.67% observed). In parentheses
we show what we call the self-lod of a marker for the given
value of η, which is the LOD score a marker would achieve
with itself if it had n − η missing entries, i.e. the maximum
achievable LOD score for a marker with η observed entries. We
see that at η = 66, every marker is included in the high-quality
set H, and the F -score is very high. As we increase η, more
markers are excluded from H and the F -score suffers. Note
that at η = 99, more than 50K markers are excluded from H,
resulting in poorer coverage of the clusters with sketch points
and a greater chance that low-quality markers will not achieve
a high LOD score with any sketch point. These low-quality
markers are left out of large clusters, decreasing the recall
in the F−score. As we increase η to exclude a majority of
the markers, the F -score drops off dramatically. These results
show that while we attempt to eliminate very “low-quality”
markers from our dataset, a high enough LOD threshold allows
us to include many markers with high amounts of missing data
in our “high-quality” set H, producing very accurate clusters.

Table V, with analogous results to Table IV for 35%
missing data, tells a similar story. The running time increases
with increasing τ and fixed η. However, here we see a much
wider range of τ values will give accurate results very quickly.
We can afford to set τ to a much higher value than in the case
of 65% missing data, allowing η to be low enough to include
all the markers in our dataset in H for higher F -scores.

V. DISCUSSION

Current approaches to genetic mapping were designed for
a small data setting, and use algorithms that scale quadratically
in the number of markers. We propose an approach that
exploits the underlying linear structure of chromosomes to
avoid expensive comparisons between (quadratically) many
pairs of markers. The resulting linkage groups (i.e., marker
clusters) are highly concordant with computationally expensive
quadratic calculations, but our improved scaling allows far
denser maps to be constructed with minimal computation.

After the formation of linkage groups, the next step in
constructing a high quality genetic map is inferring the detailed
ordering of markers along chromosomes. Since our method
takes into account the linear structure of chromosomes from
the start, the result is an approximate marker ordering that
is an excellent starting point for detailed marker order by
simulated annealing or other methods that explore short-range
perturbations of our approximate ordering. In fact, the sketch
point order found by our algorithm for the barley dataset (Sec.
IV-A), was highly correlated with the true marker order in
barley linkage groups: for 6 out of 7 groups, the Spearman
Rank Correlation Coefficient ρ was above 0.9. In simulated
data experiments, we also found a high concordance between
sketch point order and the simulated map order with a high
ρ in most cases and a perfect order in many examples with
35% missing data. We are currently working on an efficient
ordering algorithm that can use the results of BubbleCluster
to infer missing data and to quickly order markers.

Our algorithm can significantly speed up current genetic
mapping efforts on large datasets. Though the ordering phase
of genetic mapping has been shown to be NP-hard, efficient
heuristic algorithms have been proposed to quickly order
markers within a linkage group [3]. BubbleCluster eliminates
the bottleneck in current genetic mapping tools in the big
data setting. An important application of our method is in
the efficient construction of ultra-dense genetic maps for large
and complex genomes that are filled with repetitive sequences
that frustrate genome assembly but do not limit the number
of genetic markers. The most economically important of these
genomes are various grasses, including crops grown for food
(e.g., barley and wheat, whose genome sizes are two- to seven-
fold larger than the human genome) or as biofuel feedstocks
(e.g, switchgrass and miscanthus, polyploids that contain mul-
tiple, subtly different copies of a basic genome).

ACKNOWLEDGMENT

The authors thank Nicholas Tinker for providing us
with his SPAGHETTI software. The work conducted by the
Lawrence Berkeley National Laboratory and the U.S. DOE
Joint Genome Institute is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This research is supported in part by NSF CISE
Expeditions award CCF-1139158 and DARPA XData Award
FA8750-12-2-0331, and gifts from Amazon Web Services,
Google, SAP, Cisco, Clearstory Data, Cloudera, Ericsson,
Facebook, FitWave, General Electric, Hortonworks, Huawei,
Intel, Microsoft, NetApp, Oracle, Samsung, Splunk, VMware,
WANdisco and Yahoo!.

REFERENCES

[1] ML Metzker. Sequencing technologies – the next generation. Nature
Reviews Genetics, 11(1):31–46, 2009.

[2] M. V Rockman and L. Kruglyak. Recombinational landscape and
population genomics of caenorhabditis elegans. PLoS Genetics,
5(3):e1000419, 2009.

[3] Y. Wu, P.R. Bhat, T.J. Close, and S. Lonardi. Efficient and accurate
construction of genetic linkage maps from the minimum spanning tree
of a graph. PLoS Genet., 4(10), 2008.

[4] P. Stam. Construction of integrated genetic linkage maps by means of
a new computer package: Join map. The Plant Journal, 3(5):739–744,
1993.

[5] M. Bādoiu, S. Har-Peled, and P. Indyk. Approximate clustering via
core-sets. In Proceedings of the Thiry-fourth Annual ACM Symposium
on Theory of Computing, STOC ’02, pages 250–257, New York, NY,
USA, 2002. ACM.

[6] D. Feldman and M. Langberg. A unified framework for approximating
and clustering data. In STOC, 2011.

[7] U. von Luxburg, S. Bubeck, S. Jegelka, and M. Kaufmann. Consistent
minimization of clustering objective functions. In NIPS, 2007.

[8] J. Cheema and J. Dicks. Computational approaches and software
tools for genetic linkage map estimation in plants. Briefings in
Bioinformatics, 10(6):595–608, 2009.

[9] J. B. S. Haldane. The combination of linkage values and the calculation
of distances between the loci of linked factors. J Genet, 8(29):299–309,
1919.

[10] DD Kosambi. The estimation of map distances from recombination
values. Annals of Eugenics, 12(1):172–175, 1943.

[11] GRA Margarido, AP Souza, and AAF Garcia. Onemap: software for
genetic mapping in outcrossing species. Hereditas, 144(3):78–79, 2007.

[12] P. Rastas, L. Paulin, I. Hanski, R. Lehtonen, and P. Auvinen. Lep-
MAP: fast and accurate linkage map construction for large SNP datasets.
Bioinformatics, page advance access, 2013.

[13] B.N. Jackson, P.S. Schnable, and S. Aluru. Consensus genetic maps
as median orders from inconsistent sources. IEEE Trans. on Comp.
Biology and Bioinformatics, 5(2), 2008.

[14] A. Kozik and R. Michelmore. MadMapper and CheckMatrix – python
scripts to infer orders of genetic markers and for visualization and
validation of genetic maps and haplotypes. In Proceedings of the Plant
and Animal Genome XIV Conference, San Diego, 2006.

[15] E. S. Lander, P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E.
Lincoln, and L.A. Newberg. MAPMAKER: an interactive computer
package for constructing primary genetic linkage maps of experimental
and natural populations. Genomics, 1:174–181, 1987.

[16] A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering
data streams: Theory and practice. IEEE TKDE, 15(3):515–528, 2003.

[17] M. Shindler, A. Wong, and A. Meyerson. Fast and accurate k-means
for large datasets. In NIPS, 2011.

[18] M. Ankerst, M. M. Breunig, H. Kriegel, and J. Sander. OPTICS:
ordering points to identify the clustering structure. ACM SIGMOD
Record, 28(2):49–60, 1999.

[19] M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD,
volume 96, 1996.

[20] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data
clustering method for very large databases, 1996.

[21] S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering
algorithm for large databases. ACM SIGMOD Record, 27(2):73–84,
1998.

[22] F. Lin and W. W. Cohen. Power iteration clustering. In Proc. of ICML,
volume 10, 2010.

[23] N.A. Tinker. Spaghetti: Simulation software to test genetic mapping
programs. Journal of Heredity, 101(2):257–259, 2010.

[24] S. Wagner and D. Wagner. Comparing Clusterings – An Overview.
Universität Karlsruhe, Fakultät für Informatik, 2007.

[25] J. Chapman et al. Chromosome-scale assembly of the hexaploid wheat
genome from whole genome shotgun sequencing. In submission to
Genome Biology, 2014.

